University of Amsterdam
Department of Psychology
PO box 15906
1001 NK Amsterdam
The Netherlands

Phone: +31205256584
E-Mail: D [dot] Molenaar [at] uva [dot] nl


Dylan Molenaar is an assistant professor at the University of Amsterdam, The Netherlands. He is the recipient of the 2013 best dissertation award and the 2019 early career award by the Psychometric Society. In addition, he received the personal and prestigious 2007 talent grant and the 2015 Veni grant by the Netherlands Organization of Scientific Research (NWO). He is a member of the editorial board of the journal “Intelligence”, the “Psychological and Educational Measurement” section of the open access journal “Pysch”, and the proceedings of the Psychometric Society. He has published on various topics related to psychometrics, including: measurement invariance, factor analysis, item response theory, and latent class modeling. This research has resulted in over 40 international peer reviewed journal articles in psychometrics and statistics journals like ‘Psychometrika’, ‘Structural Equation Modeling’, ‘Multivariate Behavior Research’, and ‘British Journal of Mathematical and Statistical Psychology’

Molenaar [noun]:         Miller (ENG), Molinero (SP), Müller (GER), Meunier (FR), Mugnaio (IT)


Please find my papers below. Some papers include R, Mx, Mplus, OpenBUGS, or LatentGOLD scripts.
You may also want to check out the work by my PhD student, Joost Kruis, or my past post-docs Renske Kuijpers, and Maria Bolsinova.

Response and Response Time Modeling
Molenaar, D., & Schnipke, D. (forthcoming). Item response time modeling. In: J. Weiner & S. Sireci (Eds.), Guidelines for technical based assessment. International Testing Commission and Association of Test Publishers
Molenaar, D., & Van Rijn, P. (forthcoming). Modeling Item Responses with Response Times as Collateral Information in Large-Scale Educational Assessments. In: L. Khorramdel, M. von Davier, & K. Yamamoto (Eds.), Innovative Computer Based International Large-Scale Assessments. Springer.
Molenaar, D., Rósza, S., & Bolsinova, M. (2019). A Heteroscedastic Hidden Markov Mixture Model for Responses and Categorized Response Times. Behavior Research Methods, 51, 676-696. PDF
Bolsinova, M., & Molenaar, D. (2018). Modeling nonlinear conditional dependence between response time and accuracy. Frontiers in Psychology: Quantitative Psychology and Measurement, 9, 1525. PDF
Molenaar, D., & De Boeck, P. (2018). Response Mixture Modeling: Accounting for Heterogeneity in Item Characteristics across Response Times.
Psychometrika, 83, 279-297. PDF | OpenBUGS-script
Molenaar, D., Bolsinova, M., & Vermunt, J.K. (2018).
A Semi-Parametric Within-Subject Mixture Approach to the Analyses of Responses and Response Times. British Journal of Mathematical and Statistical Psychology, 71, 205-228. PDF | LatentGOLD-script
Molenaar, D., & Visser, I. (Ed.) (2017). Cognitive and psychometric modelling of responses and response times [special issue]. British Journal of Mathematical and Statistical Psychology70(2), 185-186. Editorial (pdf) | Full special issue
Molenaar, D., & Bolsinova, M. (2017). A heteroscedastic generalized linear model with a non‐normal speed factor for responses and response times. British Journal of Mathematical and Statistical Psychology70(2), 297-316. PDF | Mplus code + documentation
Bolsinova, M., Tijmstra, J., & Molenaar, D. (2017). Response moderation models for conditional dependence between response time and response accuracy. British Journal of Mathematical and Statistical Psychology70(2), 257-279. PDF
Bolsinova, M., Tijmstra, J., Molenaar, D., & De Boeck, P. (2017). Conditional dependence between response time and accuracy: An overview of its possible sources and directions for distinguishing between them. 
Frontiers in psychology8. PDF
Molenaar, D., Bolsinova, M., Rozsa, S., & De Boeck, P. (2016). Response Mixture Modeling of Intraindividual Differences in Responses and Response Times to the Hungarian WISC-IV Block Design Test. Journal of Intelligence, 4, 10. PDF | OpenBUGS-scripts
Molenaar, D., Oberski, D., Vermunt, J.K., De Boeck, P. (2016). Hidden Markov IRT Models for Responses and Response Times. Multivariate Behavioral Research, 51, 606-626. PDF | LatentGOLD-scripts
Tuerlinckx, F., Molenaar, D., & van der Maas, H.L.J. (2016).
Diffusion-based item response modeling. In W.J van der Linden (Eds.), Handbook of Modern Item Response Theory Volume 1 (pp. 283-300), Chapman and Hall/CRC Press.
Molenaar, D. (2015). The value of response times in item response modeling. Measurement: Interdisciplinary Research and Perspectives, 13, 177-181. PDF
Molenaar, D., Tuerlinckx, F., & van der Maas, H.L.J. (2015). Fitting Diffusion Item Response Theory Models for Responses and Response Times Using the R-Package diffIRTJournal of Statistical Software, 66, 1-34. PDF | R-package
Molenaar, D., Tuerlinckx, F., & van der Maas, H.L.J. (2015). A Bivariate Generalized Linear Item Response Theory Modeling Framework to the Analysis of Responses and Response Times. Multivariate Behavioral Research, 50, 56-74. PDF | Scripts  
Molenaar, D., Tuerlinckx, F., & van der Maas, H.L.J. (2015). A Generalized Linear Factor Model Approach to the Hierarchical Framework for Responses and Response Times. British Journal of Mathematical and Statistical Psychology, 68, 197-219. PDF
van der Maas, H.L.J.
, Molenaar, D., Maris, G., Kievit, R.A., & Borsboom, D. (2011). Cognitive Psychology Meets Psychometric Theory: On the Relation Between Process Models for Decision Making and Latent Variable Models for Individual Differences. Psychological Review, 118, 339-356. PDF | Scripts

Moderated, Non-linear, Non-Normal, and/or Heteroscedastic Latent Variable Modeling
Bolsinova, M., & Molenaar, D. (2019). Nonlinear indicator-level moderation in latent variable models. Multivariate Behavioral Research, 54, 62-84. PDF
Molenaar, D., & Dolan, C.V. (2018). Non-Normality in Latent Trait Modeling. In P. Irwing, T. Booth, D.J. Hughes (Eds). Wiley Blackwell Handbook of Psychometric Testing. UK: John Wiley & Sons Ltd.
De Korte, J., Dolan, C., Lubke, G., & Molenaar, D. (2017). Studying the strength of prediction using indirect mixture modeling: non-linear latent regression with heteroscedastic residuals. Structural Equation Modeling, 24, 301-313. PDF | OpenMx scripts
Murray, A.L., Molenaar, D., Johnson, W., & Krueger, B. (2016). Dependence of gene-by-environment interactions (GxE) on scaling: Comparing the use of sum scores and IRT scores of the phenotype in tests of GxE. Behavior Genetics,
4, 552–572. PDF
Molenaar, D., Middeldorp, C.M., Willemsen, G., Ligthart, L., Nivard, M.G., & Boomsma, D.I. (2016).  Evidence for Gender-dependent Genotype by Environment Interaction in Adult Depression. Behavior Genetics, 46, 59-71. PDF  
Molenaar, D. (2015). Heteroscedastic Latent Trait Models for Dichotomous Data.
Psychometrika, 80, 625-644. PDF | R code (incl. dll)
Molenaar, D., Middeldorp, C., Beijsterveldt, T., & Boomsma, D. I. (2015). Analysis of Behavioral and Emotional Problems in Children Highlights the Role of Genotype× Environment Interaction. Child development, 86, 1999-2016. PDF
Molenaar, D., & Dolan, C. V. (2014). Testing systematic genotype by environment interactions using item level data. Behavior genetics, 44, 212-231. PDF
Molenaar, D., van der Sluis, S., Boomsma, D.I., Haworth, C.M.A, Hewitt, J.K., Plomin, R., Wright, M.J., & Dolan, C.V. (2013). Genotype by Environment Interactions in Cognitive Ability Tested in 14 Different Studies. Behavior Genetics, 43, 208-219. PDF
Molenaar, D., Dolan, C.V., & de Boeck, P. (2012). The Heteroscedastic Graded Response Model with a Skewed Latent Trait: Testing Statistical and Substantive Hypotheses related to Skewed Item Category Functions. Psychometrika 77, 455-478. PDF | Mx code
Molenaar, D., & Dolan, C.V., (2012). Substantively Motivated Extensions of the Traditional Latent Trait Model.
Netherlands Journal of Psychology, 67, 48-57. PDF
Molenaar, D.1, van der Sluis, S., Boomsma, D.I., & Dolan, C.V. (2012). Detecting Specific Genotype by Environment Interaction using Marginal Maximum Likelihood Estimation in the Classical Twin Design. Behavior Genetics, 42, 483-499. PDF | Mx code | Univariate application
Molenaar, D., Dolan, C.V., & Verhelst, N.D. (2010). Testing and modeling non-normality within the one factor model. British Journal of Mathematical and Statistical Psychology, 63, 293-317. PDF | Mx code
Molenaar, D. & Verhelst, N.D. (2007). Accounting for non-normality in latent regression models using a cumulative normal selection function. Measurement and Research Department Reports, 3. Arnhem: Cito. PDF

Modeling of Intelligence Test Scores
Kovacs, K., Molenaar, D., & Conway, A.R.A. (2019). The domain specificity of working memory is a matter of ability. Journal of Memory and Language, 109, 104048. PDF
Molenaar, D
., , N., Rózsa, S., & Mészáros, A. (2017). Differentiation of cognitive abilities in the WAIS-IV at the item level. Intelligence, 65, 48-59. PDF | Mplus-script

Molenaar, D. (2016). On the Distortion of Model fit in Comparing the Bifactor Model and the Higher-Order Factor Model. Intelligence,
57, 60–63. PDF
Molenaar, D. (2015). Intelligence tests. The Blackwell Encyclopedia of Race, Ethnicity and Nationalism. DOI: 10.1002/9781118663202.wberen544
Molenaar, D., & Borsboom, D. (2013). The Formalization of Fairness: Issues in Testing for Measurement Invariance Using Subtest Scores. Educational research and evaluation, 2, 223-244. PDF
Molenaar, D., Dolan, C.V., & van der Maas, H.L.J. (2011). Modeling ability differentiation in the second-order factor model. Structural Equation Modeling, 18, 578-594. PDF
Molenaar, D., Dolan, C.V., Wicherts, J.M., & van der Maas, H.L.J. (2010). Modeling Differentiation of Cognitive Abilities within the Higher-Order Factor Model using Moderated Factor Analysis. Intelligence, 38, 611-624. PDF | Mx code
Matzke, D., Dolan, C.V., & Molenaar, D. (2010). The issue of power in the identification of g with lower-order factors. Intelligence, 38, 336-344. PDF
Molenaar, D., Dolan, C.V., & Wicherts, J.M. (2009). The power to detect sex differences in IQ test scores using multi-group covariance and mean structure analysis. Intelligence, 37, 396-404. PDF

Misc. topics
Molenaar, D., (in press). Review of Handbook of Item Response Theory, Volume II: Statistical Tools. Journal of Educational and Behavioral Statistics.
Jovanović, V., Lazić, M., Gavrilov-Jerković, V., & Molenaar, D. (in press). The Scale of Positive and Negative Experience (SPANE): Evaluation of measurement invariance and convergent and discriminant validity. 
European Journal of Psychological Assessment.
Xenidou-Dervou, I., Molenaar, D., Ansari, D., van der Schoot, M., & van Lieshout, E. C. (2017). Nonsymbolic and symbolic magnitude comparison skills as longitudinal predictors of mathematical achievement. Learning and Instruction50, 1-13. PDF
Booth, T., Murray, A.L., & Molenaar, D. (2016). Personality differentiation by cognitive ability: An application of the moderated factor model. Personality and Individual Differences,
100, 73-78. PDF 
Murray, A.L., Booth, T. & Molenaar, D. (2016). When middle really means "top" or "bottom": An analysis the 16PF5 using Bock’s nominal response model. Journal of Personality Assesment, 98, 319-331. PDF
Borsboom, D. & Molenaar, D. (2015). Psychometrics. In J.D. Wright (Ed.), International encyclopedia of the social & behavioral sciences. - 2nd ed (pp. 418-422). Amsterdam: Elsevier.
Wicherts, J.M., Bakker, M.,
Molenaar, D. (2011). Willingness to Share Research Data Is Related to the Strength of the Evidence and the Quality of Reporting of Statistical Results. PLoSONE, 6, e26828. PDF
Visch, V., Tan, E.S.H., &
Molenaar, D. (2010). The emotional and cognitive effect of immersion in film viewing. Cognition & Emotion, 24, 1439-1445. PDF
Topper, M., Molenaar, D., Emmelkamp, P.M.G., & Ehring, T. (in press). Are rumination and worry two sides of the same coin? A structural equation modelling approach. Journal of Experimental Psychopathology. PDF
Wicherts, J.M.
, Borsboom, D., Kats, J., & Molenaar, D. (2006). The poor availability of psychological research data for reanalysis. American Psychologist, 61, 726-728. PDF

Proceedings of the Psychometric Society
Wiberg, M., Bockenholt, U., González, J., Kim, K.S., & Molenaar, D. (Eds.). (forthcoming). Quantitative Psychology: The 84nd Annual Meeting of the Psychometric Society, Santiago de Chile, Chile, 2019. Springer. LINK
Wiberg, M., Culpepper, S., Janssen, R., González, J., & Molenaar, D. (Eds.).
(2019). Quantitative Psychology: The 83rd Annual Meeting of the Psychometric Society, New York, NY, 2018. Springer. LINK
Wiberg, M., Culpepper, S., Janssen, R., González, J., & Molenaar, D. (Eds.).
(2018). Quantitative Psychology: The 82nd Annual Meeting of the Psychometric Society, Zurich, Switzerland, 2017. Springer. LINK


Logo by Allan Sonnenberg
Photo by Ivailo Partchev