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This article analyzes latent variable models from a cognitive psychology perspective. We start by discussing work
by Tuerlinckx and De Boeck (2005), who proved that a diffusion model for 2-choice response processes entails a
2-parameter logistic item response theory (IRT) model for individual differences in the response data. Following this
line of reasoning, we discuss the appropriateness of IRT for measuring abilities and bipolar traits, such as pro versus
contra attitudes. Surprisingly, if a diffusion model underlies the response processes, IRT models are appropriate for
bipolar traits but not for ability tests. A reconsideration of the concept of ability that is appropriate for such situations
leads to a new item response model for accuracy and speed based on the idea that ability has a natural zero point.
The model implies fundamentally new ways to think about guessing, response speed, and person fit in IRT. We
discuss the relation between this model and existing models as well as implications for psychology and psycho-
metrics.
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Item response theory (IRT) covers a family of measurement mod-
els for the analysis of test data, in which item responses or test scores
are related to a latent variable. Specific models covered by the general
IRT framework include models for dichotomous items and a contin-
uous latent variable (Birnbaum, 1968; Lord, 1952; Mokken, 1971;
Rasch, 1960), factor models for continuous items and a continuous
latent variable (Jöreskog, 1971; Lawley & Maxwell, 1963; Mellen-
bergh, 1994), latent class models for dichotomous items and a cate-
gorical latent variable (Goodman, 1974; Lazarsfeld & Henry, 1968),
and mixture models for continuous items and a categorical latent
variable (Bartholomew, 1987; McLachlan & Peel, 2000).

Although these models are generally applicable, they have been espe-
cially successful in applications to psychological and educational testing,
where primary attention has been devoted to the development of IRT
models for dichotomous items and a continuous latent variable (e.g., see
Fischer & Molenaar, 1995; Van der Linden & Hambleton, 1997). This
class of models has proven to be extremely useful in test analysis, because
it allows for model testing, equating, computer adaptive testing, and the
investigation of differential item functioning or item bias.

In IRT models for dichotomous item responses, the probability of
an item response is mathematically related to characteristics of the

item and to characteristics of the respondent. For instance, in the
two-parameter logistic (2PL) model (Birnbaum, 1968), the probability
of a correct or affirmative response, P�, depends on the difference
between person ability (�) and item difficulty (�), weighted by item
discrimination (�) in the following way:

P� �
e������

1 � e������
. (1)

Using marginal maximum likelihood, the item parameters can be
estimated from a matrix of item responses, Ykj, which consists of
the responses of K persons to J items. The 2PL model is popular
because it is more flexible than the one-parameter logistic (1PL)
model (Rasch, 1960), in which all �j are equal (�j � �), but still
gives a relatively parsimonious account of the association structure
in the data. On the basis of these elementary IRT models, many
more advanced IRT models have been proposed (Van der Linden
& Hambleton, 1997).

IRT models, like the 1PL and 2PL models, are typically applied
to item responses that result from human information processing.
However, they bear no obvious connection to models that have
been developed in cognitive psychology to represent the mecha-
nisms that underlie such information processing. The Rasch
model, for instance, is typically derived from statistical or
measurement-theoretic assumptions (Fischer, 1995; Rasch, 1960;
Roskam & Jansen, 1984). Such derivations are based on desirable
properties (e.g., sufficiency of the total score for the latent vari-
able, parameter separation, or additivity) rather than on a mathe-
matical model of the psychological processes at play in responding
to test items. IRT models are thus based on a set of assumptions
concerning the relation between item responses and a set of person
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and item parameters, but these models do not address the question
of how these item responses are generated. As Mislevy (2008)
stated, neither “the genesis of performance nor the nature of the
processes producing it are addressed in the metaphor or the atten-
dant probability models of classical test theory or IRT” (p. 124).

It is important to emphasize that the lack of attendance to item
response processes is not an inherent weakness in IRT. In many
situations, item response processes are theoretically and practically
intractable, and the fact that IRT models bypass assumptions concern-
ing them may in such cases be seen as a strength rather than as a
weakness. However, in investigations for which knowledge of the
generating process is deemed relevant, the paucity of results that link
such models to information-processing theories can become a prob-
lem. For instance, it has been argued that the primary locus for
validity evidence lies in investigations that focus on the question of
how a testing procedure works, that is, which processes transmit
variation among individuals into variation in the item responses
(Borsboom & Mellenbergh, 2007; Borsboom, Mellenbergh, & Van
Heerden, 2004). It is evident that, in answering such questions, the
presence of a theory that links IRT models to information-processing
theories is essential. In general, such connections would seem to be
invaluable for researchers who aim to augment IRT models with an
explanatory component, that is, an account of how a latent variable
can be conceptualized at the level of an individual person and how it
may affect that person’s item responses. In providing such an expla-
nation, these accounts may also serve to bridge the gap between
intraindividual process models and models for interindividual differ-
ences (Borsboom, Mellenbergh, & Van Heerden, 2003; Hamaker,
Nesselroade, & Molenaar, 2007; Molenaar, 2004; van der Maas et al.,
2006).

In the context of classic IRT models, which relate a continuous
latent variable to a set of dichotomous item responses, Tuerlinckx and
De Boeck (2005) carried out pioneering research in connecting pro-
cess models to IRT. They showed that, if a diffusion process (Ratcliff,
1978) generates the item responses, then these item responses will
conform to the structure of a 2PL model. In this article, we take their
result as a starting point and augment it to accommodate different
testing situations as they may arise in practice. Such extensions carry
important consequences for the interpretation of existing models.

The structure of this article is as follows. We begin by briefly
review the derivation presented by Tuerlinckx and De Boeck (2005).
Then we derive three implications of their work that may be consid-
ered plausible for bipolar items (i.e., items with two attractor options)
commonly used in attitude and personality tests but not for typical
ability tests. To address this problem, we reconsider the ability con-
cept and propose a new IRT model, the Q-diffusion model, which is
applicable when respondents follow a diffusion process in deciding
which answer is correct. In addition, we extend the model to accom-
modate for guessing and for multiple-choice items. We introduce
techniques to fit the Q-diffusion model to data and illustrate these
techniques with two empirical examples. Finally, we discuss the
relation between the Q-diffusion model and other IRT models.

The Relation Between IRT Models and Diffusion
Processes

Although the analysis of test data has mostly been the territory
of psychometric models such as the 2PL, the development of
formal models of human cognition has, in past decades, been

mostly carried out by mathematical psychologists. The cross-
fertilization of these fields has, to date, been rather meager, even
though the fields evidently have much to offer to each other
(Borsboom, 2006). The current work, however, is based on the
conviction that (a) IRT models are ideally formal theories of item
responses rather than just statistical modeling techniques and (b)
such models should be based on the best formal models that
mathematical psychology has to offer with respect to the cognitive
processes that lie between item administration and item response.

Many item response processes used in cognitive and personality
testing require the respondent to make a decision (e.g., to decide
which response option is most likely to be correct, which descrip-
tion best fits the respondent, etc.). In the field of mathematical
psychology, several models have been proposed for decision mak-
ing (Busemeyer & Townsend, 1993). An important class of models
applies the idea of sequential sampling of information (for a
typology of these models, see Bogacz, Brown, Moehlis, Holmes,
& Cohen, 2006). In such models, noisy accumulation of informa-
tion drives a decision process that stops when evidence for one of
the response alternatives exceeds a threshold. The most influential
model in this class of models is the diffusion model. The diffusion
model is a continuous-time, continuous-state random-walk se-
quential sampling model (see Laming, 1968; Link, 1992; Ratcliff,
1978; Stone, 1960) that has been successfully applied to two-
choice response time (RT) paradigms in studies of memory, per-
ception, and language (see, e.g., Ratcliff, 1978, 2002; Ratcliff &
Rouder, 1998; Ratcliff, Van Zandt, & McKoon, 1999).

One important reason for the popularity of the diffusion model
is that it implements the sequential probability ratio test (Stone,
1960; Wald, 1947). This implies that the diffusion model opti-
mizes expected accuracy given response time or, conversely, that
it optimizes response time given the level of accuracy. Further-
more, as Bogacz et al. (2006) showed, more biologically realistic
complex models with leakage, inhibition, and pooled inhibition
can be reduced to the drift diffusion model and, in this way, can
implement the sequential probability ratio test. Thus, the diffusion
model is a widely applicable response model that may serve as a
starting point for the analysis of test responses.

Figure 1 displays the basic ingredients of the diffusion model.
When administered a two-choice response task, the respondent starts
collecting evidence for the response options. This is formally modeled
as a random walk that starts in the point z (sampled from a uniform
distribution with range Sz) and stops when either of the boundaries at
a or 0 is reached. Response X takes value 1 when accumulation of
information terminates at bound a and takes value 0 when it termi-
nates at the bound at 0. This termination determines the decision time
(DT). Response time T is the sum of nondecision time (Ter), which
may, for instance, cover perception of the stimulus and the time
needed to execute a motor response as well as DT.

The information accumulation process that leads to DT depends on
a drift rate parameter, which varies over trials with mean v and
variance 	. Drift rate is the mean amount of evidence accumulated
over time and is thought to reflect the subject’s ability for the task.
Boundary separation, in contrast, is determined by the response cau-
tion of the subject, which may be influenced by instructions and
rewards. If boundary separation is decreased, both DT and the prob-
ability of terminating at the correct boundary are reduced. In this way,
the inverse relation between speed and accuracy (i.e., the speed–
accuracy trade-off) is naturally accommodated in the model.
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The starting point z reflects the a priori bias of a participant for
one or the other response. In response time modeling, this param-
eter is usually manipulated through payoff or proportion manipu-
lations (Edwards, 1965). Such manipulations are generally not
explicitly applied in psychological or educational testing. Variabil-
ity in the accumulation of information depends on the parameter s,
which is usually fixed at .1 or 1 to identify the model. Variability
in the starting point and variability in drift rate over trials have
been introduced in the model to account for errors faster or slower
than correct responses. Further explanation of the model can be
found in, for instance, Ratcliff and Rouder (1998). In this article,
we use only the two most important parameters of the diffusion
process: v, which denotes (mean) drift rate, and a, which denotes
boundary separation. It is important to note that these two funda-
mental parameters, which feature in almost every sequential sam-
pling model of choice, influence both accuracy and response time,
as specified in the following equations.

The joint density of X (boundary chosen) and T (response time)
has a rather complex mathematical form:

fX,T�x,t� �

�2

a2 exp� �ax � z�v

�2 �
v2

2�2�t � Ter��
� �

m�1

�

m sin�
m�ax � 2zx � z�

a �
� exp��1

2


2�2m2

a2 �t � Ter�� . (2)

In contrast, the equations for the probability of a correct response
and for the expectation of RT (i.e., of DT � Ter) are relatively easy.
The probability of X � 1, which we denote by P� (i.e., terminating
at the upper boundary) is as follows:

P� � P�X � 1� �
e�2zv � 1

e�2av � 1
(3)

(see Cox & Miller, 1970). In case of an unbiased decision process
(i.e., z � 1/2 a), this simplifies to a form very familiar to IRT
modelers:

P� �
e�av � 1

e�2av � 1
�

eav

1 � eav
. (4)

The mean decision time can be expressed as1

E�DT� �
a

2v

1 � e�av

1 � e�av
. (5)

Tuerlinckx and De Boeck (2005) have connected Equation 4 to the
2PL (Equation 1). They have argued that v, the mean drift rate, can
be decomposed into a person part (�) and an item part (�), and
have proposed a simple linear relation, such that v � � � �.2 At
first sight, this seems to be a reasonable step. However, as we show
later, the resulting models, although plausible for attitude and
personality tests, are highly implausible for ability tests.

Boundary separation, a, is equivalent to the discrimination pa-
rameter � in the 2PL model within the derivation of Tuerlinckx

1 For unbiased (z � 1/2a) decision making, we can rewrite this to
E(DT) � (a/2v) (2P� � 1). The importance of the reduction in DT by the
second term diminishes when P� takes extreme values close to zero or one.
Thus, for high values of �av�, that is, P� close to zero or one, E(DT) can be
approximated by �a/2v�. The underestimation of E(DT) in this approxima-
tion is not important in the qualitative analysis comparisons later. In fitting
the Q-diffusion model to data, we do not apply this approximation.

2 Throughout the article, diffusion model parameters are set in normal
typeface, and IRT parameters are set in symbolic typeface.

Figure 1. The drift diffusion model of two choice decisions. This example concerns the lexical decision about
words and nonwords. The random walk, representing the noisy accumulation of evidence, starts at z and
continues until the word or nonword boundary is hit at decision time DT. Response time RT is the sum of
decision time and the time (Ter) required for other processes, such as the motor part of the response. Starting
position z and drift rate x may vary over trials according to a uniform and a normal distribution, respectively.
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and De Boeck (2005). This means that the discriminatory power of
items depends on factors that determine boundary separation, such
as instruction, rewards, and time limits, but also depends on person
characteristics, such as response caution. Standard speed–accuracy
trade-off studies have shown that boundary separation is influ-
enced by time limits (Wickelgren, 1977). In practical test situa-
tions, boundary separation depends on how much time subjects get
or take to answer items. This implies that increasing the time limit
of items should increase the discriminatory power of items. This is
an important consequence of the model that plays a key role in the
present article.

Tuerlinckx and De Boeck (2005) described their work as fos-
tering a new interpretation of item response models rather than as
a derivation of item response models. Indeed, the most crucial step
in their line of reasoning, which consists in equating the diffusion
parameters with the 2PL parameters, is a primarily interpretative
one. As we demonstrate later, alternative setups and interpretations
are possible. On the other hand, in the work by Tuerlinckx and De
Boeck, the 2PL is derived from assumptions about human infor-
mation processing and two-choice decision tasks, which make the
interpretative step quite reasonable. For instance, in view of this
work, the choice for the logistic equation in the 2PL can be
justified on considerations of substantive theory, and standard IRT
parameters receive mechanistic interpretations in terms of one of
the best information-processing models currently available. Thus,
the work of Tuerlinckx and De Boeck lays out a general process
model account of item response processes that is compatible with
the standard IRT model for item response data. It is hard to
overemphasize the psychometric importance of this result.

Implications of the Diffusion Interpretation of IRT
Models for Ability Testing

If a diffusion model accurately describes the response processes
that subjects follow when answering test items, this carries the
implication that a standard 2PL IRT model should fit the data.
However, additional implications follow from the model as well,
because it yields predictions not only on the probability distribu-
tion of item responses but also on the distribution of response
times. In this respect, the diffusion model makes strong predictions
about the qualitative and quantitative properties of the response
times (Ratcliff, 2006). Three qualitative implications are especially
relevant in the current context.

A first implication that follows from the model, and one that will
play an important role later in the article, is that reducing item
administration time, in the limit, should yield P� � 1/2, irrespec-
tive of the value of �. This is because, in the diffusion model,
persons adjust boundary separation to handle very short time
limits; as time limits become smaller, boundary separation ap-
proaches zero, and the probability of hitting either bound becomes
1/2. In IRT terms, item discrimination becomes zero, so that the
item characteristic curve (ICC) becomes a flat line at P� � 1/2,
equal for all levels of �.

Clearly, this can happen only if items have two response op-
tions; otherwise, for M response options, the probability of any
given response approaches 1/M as the time limit approaches zero.
Hence, the diffusion interpretation of IRT models is not applicable
to multiple-choice items with more than two response options.
This is important because, even though IRT models are often

applied to binary data, the dichotomies in the data result from
scoring (incorrect–correct) rather than from the fact that the re-
sponse process itself results from a two-choice situation. Thus, the
derivation discussed earlier does not apply naturally to the ability
tests for which IRT models are often used. We extend the model
in this direction later in this article.

The second important implication of a diffusion interpretation of
IRT models concerns the effect of changes in v (which equals � �
� in IRT terms). Under a diffusion model, response times are
slowest when v  0; hence, in the IRT context, response times
should be slowest when � � �. Persons with � �� � are expected
to be very fast; in fact, they should be as fast as persons with � ��
�. This is plausible for personality and attitude items but not for
ability tests.

To see this, consider items such as the death penalty is allowed
and I stick to my decisions, where agree and disagree responses are
arbitrarily coded as X � 1 and X � 0. Subjects with extreme
positions (� �� � or � �� �) will probably answer confidently and
quickly. Subjects with � � � will be in doubt and are likely to
respond more slowly (van der Maas, Kolstein, & van der Pligt,
2003). The latter effect is also known as the distance-difficulty
hypothesis (Ferrando & Lorenzo-Seva, 2007).3 For ability tests,
this implication is extremely unlikely to hold: There is no reason
to suppose that, for instance, individuals of very limited intelli-
gence will be as fast in giving the incorrect response as highly
intelligent individuals are in giving the correct response. In fact, in
such cases one expects that individuals for whom the item is very
hard will take longer than individuals for whom the item is easy.

A third implication concerns item discrimination, which in the
diffusion context is determined by boundary separation. For pos-
itive v (i.e., whenever � � �), increases in boundary separation
lead to increases in P�. Because boundary separation is a function
of the time limit imposed on the respondent, this means that if we
allow able persons more time to think about their answer, the
probability of a correct response will increase. However, the re-
verse is also true and considerably more surprising. For negative v
(i.e., for � � �), allowing more time to think should reduce the
probability of a correct response. This is illustrated in Figure 2.

This gives a special meaning to the point where � � �. Instead
of just being the point where P� equals 1/2, it separates two
qualitatively different regimes. Below this point, more time to
solve the item will decrease P�. Above this point, more time will
increase P�. For very long time limits, the item characteristic
curve should approach that of a Guttman item (i.e., become a step
function).

This may again be considered plausible in typical personality or
attitude tests but not in ability tests. In personality and attitude
testing, if � is just below � and the subject has to respond quickly,
the noise factor in the decision process will play a large role.
However, the longer a subject thinks about his or her position, the
more likely it becomes that he or she will select the answer option
that best fits his or her latent state. For ability tests, however, the

3 In fact, this phenomenon favors Tuerlinckx and De Boeck’s (2005)
model because their model explains this effect without any alterations to
the model. The model of Ferrando and Lorenzo-Seva (2007) requires an
adaptation of Thissen’s (1983) model for response times to explain this
effect.
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lower end of the population cannot approach the limit of P� � 0
as a matter of principle: The worst they can do is guess, which
means they approach the guessing probability of an item (0.5 for
the binary case), not zero. In addition, one should expect that
increasing the time limit will increase the probability of a correct
response across the board.

Guessing is a widely recognized problem in IRT, where the
standard solution to handle it is to introduce an extra parameter
into the model. This results in the three-parameter logistic (3PL)
model (Birnbaum, 1968), which is an extension of the 1PL or
2PL model: P�

3PL � cj � (1 � cj) P�
2PL (see Equation 1). In this

model, c is the lower asymptote of the item characteristic function,
such that for any value of �, P� � c. San Martin, del Pino, and De
Boeck (2005), following Hutchinson (1991), discussed several
interpretations based on a distinction in a p-process of searching
for the correct answer and a g-process for guessing. One example
of this line of reasoning is that a respondent first searches for the
correct answer and only guesses when this search fails (assuming
that the respondent recognizes this failure); however, an alternative
order of processing is possible. It is not straightforward to derive
this model from a diffusion model. We do not attempt such a
derivation because we think a simpler and more fundamental
solution is possible in terms of a single process model.

In conclusion, if a diffusion model governs the response pro-
cesses in a testing situation, then the three qualitative implications
just described make sense for two-choice attitude and personality
tests but not for typical ability tests. We consider this to be
surprising, because (a) the diffusion model would, at first glance,
seem to give a reasonable approximation of the response processes
in a typical ability testing situation, and (b) ability tests are the
standard field of application for IRT models. What should we
conclude from this?

One possible conclusion is that the 1PL and 2PL models can be
applied only to personality and attitude tests and perhaps to some
particular ability tests,4 but not to the usual ability tests. This
conclusion is correct but only when the diffusion model adequately
describes the response process. It is debatable to what extent this
is the case for typical ability tests (i.e., IQ tests). Thus, we leave
open the possibility that the diffusion model does not describe the

response processes in such cases but that whatever model does
may imply the standard IRT model after all.

An alternative conclusion is that a diffusion model does, in fact,
describe the item response processes in typical ability tests accu-
rately. In that case, even though the standard 2PL model may be a
valuable pragmatic or data-analytic tool, it cannot be considered to
give an accurate theoretical account of the data structure. In this
viewpoint, the suggested course of action is to investigate what
kind of IRT model does follow from a diffusion account of the
response process. The next paragraphs develop this line of reason-
ing and suggest a new IRT model that is consistent with a diffusion
interpretation of the response process.

What Are Abilities?

If a sequential sampling model holds for a typical ability test
item, the standard 2PL does not follow. First, the implication, that
P� approaches 0.5 as the time limit approaches zero, cannot be
correct whenever items have more than two response options; in
that case, P� should approach the guessing probability, which is
1/M for equally attractive alternatives. Second, the model should
be consistent with the fact that giving a subject more time will
improve the probability of a correct response across all values of
the latent variable. One could, of course, take these problems to be
purely statistical in nature and craft solutions by considering
models that evade them. However, we suspect that problems we
encounter here indicate an underlying problem in the way that
abilities are typically represented in psychometric theory. To see
this, it is necessary to consider the deep structure of the ability
concept in some detail.

In current psychometric theory, researchers commonly use the
word ability to refer to the latent variable in a psychometric model
like the 2PL. However, what such a latent variable represents is not
an ability. A latent variable in a standard measurement model can
represent only differences between levels of ability. That is, stan-
dard models of psychometric theory are restricted to the represen-
tation of individual differences (Borsboom et al., 2003), and the
sentence “John has value �k on the ability measured by this test”
derives its meaning exclusively from the relation between John
and other test takers, real or imagined (Borsboom, Kievit, Cer-
vone, & Hood, 2009). However, in our attempt to relate psycho-
metric abilities to psychological processes, we are doing some-
thing entirely different from traditional approaches in
psychometrics. For in the diffusion model, abilities are not merely
instances of an individual differences variable. They are parame-
ters at play in the actual process that a single individual follows
when answering a test item. For this reason, we are forced to
address a question that is virtually never raised in psychometric
theory: What is ability at the level of an individual?

4 Typical Piagetian conservation tests, in which children have to judge
whether the amount of liquid remains the same when poured from a normal
glass into a glass with a smaller diameter, could be consistent with these
three implications, as (a) nonconservers typically score below chance level,
because they believe the incorrect answer to be correct, (b) transitional
children (� � �) are slower than nonconservers and conservers (van der
Maas & Molenaar, 1992), and (c) the probability of a correct response is
likely to decrease for nonconservers when they get more time to think over
their answer.

Figure 2. A longer time limit for an item will increase the probability
correct (P�) for persons with � � � but will decrease this probability for
persons with � � �.
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To start with an uncontroversial and well-understood ability,
consider the ability to walk. It refers to a capacity to do something,
namely, to cover a certain distance by using a particular form of
propulsion common to land animals. One immediate and striking
feature of the ability in question is that it can be present or absent.
That is, although some individuals can walk, others (e.g., babies
and persons with disabilities but also fish, chairs, and elementary
particles) cannot. In this sense, it is meaningful to say the ability to
walk is essentially positive. We think that this characteristic is
common to all abilities. In the terms of philosophers like Harré
(Harré & Madden, 1975), at the individual level, to ascribe ability
to an individual is to ascribe that individual a causal power.
Although such powers may be present to a greater or lesser degree,
they have a definite minimum, namely absence. Thus, in contrast
to, say, your appraisal of a Mozart symphony or your liking of
parties, abilities cannot be negative.5

A second observation about a simple ability, like the ability to
walk, is that any task that can be said to measure this ability
requires some of the ability. That is, a task that depends on the
ability to walk (i.e., for which one requires the ability) depends on
a positive amount of work to be done through the structures and
processes that instantiate the ability. For instance, any task that
depends on the ability to walk must require an individual to walk
a positive distance; if the distance to be covered is zero, then the
task simply cannot depend on the ability to walk (this is evident
from the fact that all sorts of objects that do not have the ability in
question, such as, say, the journal that you are currently holding in
your hands, are able to meet the task just by staying where they
are). This is also a key difference between ability testing on the one
hand and personality and attitude testing on the other: To endorse
an item in a personality questionnaire, or to comply with a state-
ment in an attitude test, does not require any given level of a
personality trait or attitude—one may, for instance, lie. That is,
someone who walks a certain distance or solves an IQ item
displays (some of) the ability in question, but someone who
endorses a personality item does not. Thus, like abilities them-
selves, the difficulties of tasks that measure these abilities are
essentially positive as well.

A third observation about simple abilities is that, if a task
depends on that single ability and on no other ability, then that task
can, in principle, be carried out by any individual who possesses
the ability if only the individual is given sufficient time. Again,
considering the ability to walk, we may identify tasks that depend
only on this ability as tasks that require a person to walk a certain
distance, without obstacles like rivers that require swimming or
mountains that require climbing. If given enough time, any person
who has the ability to walk may cover any distance unless, for
some reason, that individual loses the ability along the way.

We propose that these characteristics may be considered axi-
omatic for simple abilities and the tasks that depend on them. It is
evident, however, that this puts serious limits on what could count
as a process model that describes abilities. In a diffusion model, for
instance, it requires that drift rate is always positive and that the
probability of hitting the boundary for a correct response should
approach one if time limits are absent.

What happens if we assume these properties to hold and sub-
sequently introduce individual differences into the model? Con-
sidering again the ability to walk, we may say that among indi-
viduals who have this ability, some are better at it than others. This

means, in the diffusion model logic followed here, that these
individuals (a) will have a higher probability of successfully com-
pleting a task (e.g., walking 100 meters) if there are time limits
(which implies that some will not complete the task) and (b) will
complete that task faster if there are no time limits (in this case, all
individuals will complete the task). In the general situation, the
time limits imposed will induce a speed–accuracy trade-off, mean-
ing that under time limits, there will be both individual differences
in the probability of completing a task and in the time in which
they do so.

What kind of individual differences model follows from this line
of reasoning? First, because abilities are essentially positive, it is
sensible to represent them by positive numbers. Thus, the domain
of � is assumed to be R�. Second, because all tasks require positive
ability, the same holds for task difficulty, so that difficulty also has
R� as its domain. Third, ability and difficulty should be combined
in such a way that resulting drift rate is always positive. In the next
section, we propose a new way to combine ability and difficulty to
establish this. Fourth, if the time limit approaches infinity, the
probability of a correct response should approach unity for all
levels of ability. Fifth, as time pressure increases, the probability of
a correct response should approach 1/M for M equally attractive
answer options, with P� � 0.5 for the two-choice case. This
implies a solution for the problem of guessing in the 1PL and 2PL
model for abilities. Given that drift rate is always nonnegative,
below chance scoring cannot occur. We now derive a model that
has all of these properties.

The Positive Ability Model

Here, we take characteristics of ability outlined earlier as axi-
omatic and propose a class of models that respects these axioms.
Naturally, there exists a wide class of models for which this is the
case; we propose to let these models fall under the general positive
ability model. We focus on specific subtypes of these models that
may be useful in scientific research because they have clear
relations with existing process and individual differences models.
As before, we take the diffusion model as our starting point.

First, however, an observation about the parameters of the
diffusion model is in order. Tuerlinckx and De Boeck (2005) used
logit(P�) � av to derive the 2PL model; they equated the diffusion
parameter a with the IRT parameter � and equated the diffusion
parameter v with the linear combination of IRT parameters � � �.
From the latter identification, it is clear that the diffusion model
has no clear separation between item and person parameters,
whereas in IRT this distinction is essential (van der Linden, 2009).
A similar problem occurs with the a parameter, for which it is
unclear whether it should be considered a person, item, or item by
person parameter (in IRT, the corresponding parameter � is an
item by person interaction parameter). To derive an IRT model for
ability from the diffusion hypothesis, however, we need to be able
to separate the person and item contributions to performance as in
IRT.

5 A standard reply of psychometricians to the requirement of nonnega-
tive ability is that we can apply Rasch’s transformation �� � e� to scale the
latent trait values to positive values. However, this does not fully solve the
problem, as it still allows some � to be less than some �, implying that
subjects score below chance.
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To solve this problem, we decompose drift rate and boundary
separation into a person and an item part. For drift rate, Tuerlinckx
and De Boeck (2005) proposed to distinguish between ability and
difficulty, which we here denote by v p and v i, respectively; both
are required to be positive, in keeping with our reconceptualization
of the ability concept. For boundary separation, we propose a
similar decomposition of the a parameter into a person and item
part (response caution and time pressure), denoted by ap and a i,
respectively. Response caution is then taken to be a person char-
acteristic. Individual differences in response caution may, for
instance, relate to personality traits. Time pressure depends on the
setup of the test and test instructions. In a computerized test with
fixed equal time limits per item, it can be equal for all items. In a
test with a time limit for the whole test, time pressure may increase
during the test. These and other scenarios are discussed later.

Next, we need functions v � f(v p,v i) and a � g(ap,a i) to
combine the person and item parts into the ordinary diffusion
parameters. Several constraints on these functions can be formu-
lated. First, v and a must be positive: Boundary separation must be
positive by definition, and drift rate must be positive because of the
requirement that ability is positive. Note that for this reason, the
difference function proposed by Tuerlinckx & De Boeck, 2005,
does not work here. Second, the function f should be monoton-
ically increasing in v p and monotonically decreasing in v i.
Third, if v p approaches infinity or v i approaches zero, f should
approach infinity, such that P� goes to 1. Fourth, if v p ap-
proaches zero or v i goes to infinity, f should approach zero,
such that P� approaches 1/2.

A wide class of functions have these properties and, thus,
instantiate submodels of the positive ability model. One example
of a function that respects the constraints just described and that
we use in the following is the quotient function, v � vp/v i.6 We
propose to apply the quotient function for both v and a, such that
v � vp/v i and a � a p/a i. In this case, v and a are always positive
when v p, v i, ap, and a i are positive. Also, drift rate increases with
increasing ability and decreases with increasing difficulty. For
boundary separation, the quotient function works well too. Given
these definitions, we arrive at the sequential sampling based item
response model for positive ability:7

P� �
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ak
pvk

p

aj
ivj

i

1�e
ak

pvk
p

aj
ivj

i

. (6)

This model adheres to the properties attributed to simple abilities
in the previous paragraph: both ability and difficulty are positive
and drift rate, v � v p/v i, is always positive, so that as the time limit
becomes larger, the probability of a correct response increases for
all levels of ability; the limiting case is the situation without a time
limit, in which the probability of a correct response equals one. In
Equation 6, participants cannot systematically score below chance
level. This model has the proper ingredients to serve as a model for
ability that is congruent with the hypothesis that a diffusion pro-
cess generates the item responses.

The model proposed in Equation 6 is naturally applicable to
two-choice tests; however, as we argued earlier, it is important to
accommodate tests with multiple response options. For this pur-
pose, we propose to apply an extension of the 2PL that covers
multiple-choice options. We derive this extension from Bock’s

(1972) nominal response model (an IRT model for multiple-choice
items with unordered categories). For M alternatives, the proba-
bility of response m in this model is as follows:

Pm �
e�m

� ��m
� �

�
k�1

M

e�k
���k

��

. (7)

The parameters �m
� (intercepts) and �m

� (slopes) are item parame-
ters that determine the attractiveness, ebm

� �am
� �, of each alternative m

as a function of �. Under the assumptions that incorrect alterna-
tives are all equally attractive and that m � M is the correct answer
(i.e., by setting �1

� . . . �M�1
� and �1

� . . . �M�1
� to zero), it follows

that
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. (8)

By setting �� � � and �� � ���, this can be rewritten as a
modified 2PL model:

P� �
e�������ln�M�1�

1 � e�������ln�M�1� (9)

Alternatively, applied to the positive ability model it rewrites to the
following:
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Here, when ability approaches zero, the probability of a correct
response does not approach 0.5, as in the original derivation of
Tuerlinckx and De Boeck (2005), but approaches 1/M, which is
precisely what is desired.8

The model in Equation 10 still has the structure of a 2PL model.
Given �k � ak

pvk
p;�j � 1/aj

ivj
i;�j � ln�Mj � 1�aj

ivj
i, Equation

10 leads to Equation 1, the standard 2PL model, with the con-
straints that both � and � are nonnegative. For the linear setup of

6 A metaphorical way to think about this relation is in terms of the
famous Newtonian relation speed (drift rate) � power (ability)/force (dif-
ficulty). It is interesting that Rasch (1960) proposed that the speed param-
eter be decomposed in his model for reading speed in reading ability/
difficulty (see van der Linden, 2009, for a recent discussion).

7 Here, superscripts p and i are used to indicate the person and item part
of drift and boundary separation. Subscripts k and j indicate subject and
item number.

8 Tuerlinckx and De Boeck’s (2005) derivation of the 2PL model was
based on the relation logit(P�) � a v � � (� – �). For multiple choice, we
now get a v � � (� – �) � ln(M � 1). Assuming that an increase in number
of alternatives in first instance reduces the drift rate and not boundary
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the 2PL, logit(P�) � �j
��k � �j

� (as used in the nominal response
model), �j

� further reduces to �ln(Mj � 1) and �j
� � �j � 1/aj

ivj
i.

We propose that Model Equation 10 may be taken as a general
framework to model item responses for simple abilities, under the
assumption that a diffusion process gives rise to the item re-
sponses. To name this model, we link it to an earlier model
developed by Ramsay (1989), which was proposed on a different
basis and which he called the quotient model (QM):

P� �
e�k/�j

K � e�k/�j
, �k � 0, �j � 0. (11)

When � � apvp, � � a iv i, and K � M � 1, Ramsay’s QM and the
model in Equation 10 are equivalent. Therefore, the model we
proposed in Equation 10 can be considered a specification of
Ramsay’s QM on a diffusion model basis. For this reason, we
propose to call the model the Q-diffusion model.9

Properties of the Q-Diffusion Model

An attractive property of the Q-diffusion model is that it expli-
cates the meaning of the usual IRT parameters �, �, and �. The
role of the speed–accuracy trade-off in testing is clarified by the
definition of ability as the product of boundary separation and drift
rate. The success rate in solving items depends not only on the
information powers of the subject but also on his or her response
caution. We can use response times to separate these two factors.
Improvements in test scores that result from increases in response
caution should increase response times, whereas improvements
that result from increases in drift rate should lead to lower response
times. In addition, the discrimination parameter � obtains a radi-
cally new interpretation as the easiness parameter, which is the
product of the time pressure and drift rate of the item. The role of
� (or actually ��) is limited to being an intercept guessing param-
eter for subjects with zero ability.

The predicted item response probabilities in standard IRT mod-
els are invariant under linear transformations of the � parameter
(i.e., the scale of � has an arbitrary zero). As a result, a value of
zero could mean very different things depending on the values for
other subjects and the item parameters. In the Q-diffusion model,
however, � � 0 always means the absence of ability, which
implies performance at chance level. This gives the Q-diffusion
model certain ratio properties: For instance, if M � 2 a doubling
of � gives a doubling of the logit score. A similar line of reasoning

applies to the � parameter. For example, for the ability of addition,
we could think of 1 � 1 as an item for which the parameter v i is
nearly zero, which implies that it has very high �. For extremely
difficult items, on the other hand, � approaches zero.

The ICCs of the Q-diffusion model are simple. Because all a and
v are positive, all � and � are nonnegative. This implies that all
ICCs reside in the first quadrant and all ICCs are monotonically
nondecreasing. The intercept is simply 1/M. Slopes are determined
by �j � 1/aj

ivj
i. Figure 3 gives examples for M � 2, M � 4, and

M � 500 (as an approximation to open questions).10

The ICCs in Figure 3 demonstrate the restrictiveness of the
Q-diffusion model. Both the 2PL and the 3PL are much more
flexible. The additional restrictions of the Q-diffusion model have
the following sources. First, in contrast to 2PL and 3PL models,
the Q-diffusion model excludes the possibility that subjects score
below chance level. Second, if Mj � M, then the model implies
that ICCs do not cross. As in Rasch’s (1960) model, this restriction
has both statistical and interpretive advantages, although it makes
the model less flexible as a data-fitting tool; needless to say,
however, the present article does not work within the tradition that
views data-fitting flexibility as the prime virtue of a measurement
model. Third, all ICCs start increasing at � � 0 (see Figure 3,
where M is 2 and 4). In the 1PL, 2PL, and 3PL, the ICCs of
difficult items first remain at zero (or chance) level and begin to
increase only when � reaches the � of the item.

Another way to demonstrate the ICCs of the Q-diffusion model
is to compare them with the ICCs of the so-called Rasch model
with guessing, which is a 3PL model with equal discrimination and
fixed (at 1/M) guessing parameters for the items. In Figure 4, we
display both ICCs on the exp and log scale to ease comparison.

A note on the limitations of the Q-diffusion model is in order at
this point. The structure imposed on the ICCs clearly restricts the
applicability of the Q-diffusion model in certain practical applica-
tions where IRT models are routinely used today. For instance, one
may solve some items of a test measuring one’s proficiency in
physics, but one will certainly fail some more difficult items, even
when one is allowed to ponder them for the rest of one’s life; such
a situation violates the Q-diffusion model. This may mean that a
diffusion process does not accurately describe the ability in ques-

9 As Ramsay (1989) noted, the quotient model could also be called an
exponential difference equation, when logarithmic transformation to ability
and difficulty are applied. Earlier, Cressie and Holland (1983) used this
model in a slightly different form:

P� �
cee�

k
���

j
�

�1 � c� � cee�
k
���

j
�,

which, given c � 1/M and logarithmic transformations of �* and �*, is
again equivalent to Ramsay’s QM and thus to Equation 10.

10 This approximation can be defended because the set of possible
answers to open questions is often restricted. A chess item asking for the
best move in a chess position, for instance, is an open question with a
limited set of legal moves (often � 100) as possible answers. However, it
is well known (e.g., de Groot, 1978) that chess players, in contrast to chess
computers programs, consider only a very limited set of possible moves.
The initial selection of candidate moves is an important and still not
well-understood part of the solution process, which is not covered in the
diffusion part of the decision process.

separation, we can express the effective drift rate for multiple choice as
v� � v � ln(M � 1)/a. An alternative way to incorporate multiple choice
in the diffusion model is to change starting point Z to a/M. In both cases
the probability of a correct guess (when v � 0) is, as desired, 1/M.
However, in the latter case the mean response time of an incorrect answer
is much lower than the mean response time of correct answers. This is not
desirable and is one of the main reasons why we prefer to correct for
multiple choice by adapting the drift rate. Note that the upper boundary in
this multiple-choice diffusion model represents the correct response,
whereas the lower boundary corresponds to all incorrect options together.
Assigning one boundary to all incorrect response options is not completely
satisfactory. Ultimately, it would be preferable to derive a Q-diffusion type
of model from a multiple-choice stochastic sequential sampling model for
decision making.

346 VAN DER MAAS, MOLENAAR, MARIS, KIEVIT, AND BORSBOOM



tion, that the test does not measure a single ability, or both. In
many practical testing situations, we do suspect that scores depend
on a host of related and hierarchically nested abilities (van der
Maas et al., 2006). Thus, in this case the Q-diffusion model may

not describe the data well because the conceptualization of the test
items as measuring a single ability is incorrect. Even though the
item scores may approach unidimensionality in a statistical fash-
ion, from a substantive point of view, they depend on discretely

Figure 3. Item characteristic curve (ICC) of a restricted Q-diffusion model for ability testing. All � (v pa p) and
� (1/v ia i) are, by definition, positive. Intercepts are equal to 1/M, that is, subjects with ability zero guess. Note
that for high M the typical logistic form of the ICC is recovered. High M is used to model open questions.

Figure 4. The quotient model (QM) compared with the Rasch (difference) model with guessing (DM-G). To
ease comparison, the QM is also displayed on a log scale, and the DM-G is displayed on an exponential scale.
A subtle difference between the QM (log scale) and DM-G is the asymmetry in the QM-log item characteristic
curves (ICCs). They leave the lower asymptote more slowly than they approach the upper asymptote. A larger
difference between the models is indicated by the arrows. DM-G ICCs can be added left and right to the current
set of items. In the QM-log the item on the right is the most difficult item possible.
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separable abilities. Thus, such a test may be treated with, for
instance, a conjunctive multidimensional or multicomponent
Q-diffusion model (de la Torre, 2009; Embretson, 1984; Hoskens
& De Boeck, 2001; Maris, 1995). The construction of such a
model requires further theoretical work.

Finally, as a typical advantage of the Q-diffusion model we
mention the following case. Suppose we constructed a computer
item bank for items with a time limit of 30 s per item. For some
reason, we decide to apply this item bank in a test with a different
time limit, say 1 min per item. Rescaling of the item parameters is
hard to achieve within the standard interpretation of IRT param-
eters. We generally expect items to be more easy, but the change
in difficulty probably also depends on difficulty itself. According
to the diffusion interpretation of the 2PL, the answer is simple and
surprising. The �s do not change at all. Only the �s change,
because they increase when the time limit is relaxed.

Fitting the Q-Diffusion Model

In this paragraph, we develop statistical methodology to fit the
Q-diffusion model and present two examples. First, note that the
full Q-diffusion model cannot be fitted with accuracy data only,
because response times are required to distinguish between the a
and v part of persons and items. If response times are not available,
however, we may still fit a partial Q-diffusion model to the
accuracy data only (see also Ramsay, 1989).

If response times are available, different techniques developed
to fit the diffusion model to data (Vandekerckhove & Tuerlinckx,
2007; Voss & Voss, 2007; Wagenmakers, van der Maas, & Gras-
man, 2007) are available but are not always appropriate for psy-
chometric applications. One reason for this is that, in typical
experimental psychology applications where standard techniques
are used, subjects are treated as equal (ak

p � a p, vk
p � v p), and items

are divided into a small number of types, say A and B (vj
i � vA

i or
vj

i � vB
i ). Moreover, because items are submitted in mixed

blocks, boundary separation is equal over item types (aj
i �

a i). Because M is also known, only two parameters have to be
estimated, often based on many observations per subject per item
(type).

In psychometrics, however, subjects and items differ from each
other, so that other constraints are required. If time pressure is equal
for all items, then aj

i � ai. The � estimate then reflects differences in
easiness (i.e., 1/difficulty). For many tests, such as exams, however,
time pressure increases during the test, which, if not corrected for, will
bias the estimates of vj

i. We developed a Bayesian fit technique to meet
the special requirements of psychometric data.

Example 1: Mental Rotation

We collected data from 121 subjects in the context of a mental
rotation task (Kievit, 2010). Subjects had to identify a stimulus as
either identical to or different from a rotated presentation of the
same stimulus or of a different stimulus. In such a mental rotation
task, item difficulty varies with rotation angle. For more details,
see Borst, Kievit, Thompson, and Kosslyn (2011), who used the
same experimental setup.

Responses were dichotomous (correct vs. incorrect), and re-
sponse times were recorded. We randomly selected 10 out of 280
items of three different rotation angles (500, 1000, 1500) for the

model-fitting analysis. We discuss the analysis at two levels that
may arise in practice. First, we analyze the accuracy data only.
This allows for comparison against standard IRT models, which do
not have implications for the response times; in addition, these
analysis can be executed with standard software. Second, we
analyze the full data set, including response times. This analysis
presents more difficult problems; we used a Bayesian analysis to
tackle these problems. Both examples and scripts are available on
the website of the first author.

Estimation without response times. Without response times
we cannot distinguish between the a and v parameters of persons
and items, but analyzing only the accuracy does allow for a
comparison with standard IRT models. Therefore, we choose the
linear setup of the 2PL formulation of Equation 10, in which
�k � ak

pvk
p, �j � 1/aj

ivj
i, and �j � ln�Mj � 1�. The resulting

model may be fitted with the nonlinear mixed effect setup for IRT
models (De Boeck & Wilson, 2004) through the SAS procedure
NLMIXED (SAS Institute, 2000), where we attain positive values
of ability parameters by exponentiation. The NLMIXED procedure
provides maximum likelihood estimates with standard errors. Mj

can be fixed or estimated, and information criteria, such as the
Akaike information criterion and the Bayesian information crite-
rion, can be used to compare models.

Results are represented in Table 1 and indicate that the
Q-diffusion model outperforms the 1PL, the 2PL, the 3PL, and
the 1PL with guessing. Both the Akaike information criterion and
the Bayesian information criterion favor the Q-diffusion model.

Estimation with response times. Fitting the full Q-diffusion
model requires the evaluation of rather complex mathematical
functions, some involving triple integrals. Hence, we take a Bayes-
ian approach to model fitting, which renders these functions trac-
table. We note that it should be possible, in principle, to implement
the Q-diffusion model in a frequentist framework as well; because
we use uninformative priors for the parameters in the Q-diffusion
model, results are generally the same.

Table 1
Fit Statistics for the Q-Diffusion Item Response Model and
Several Standard Item Response Models

Model �2LL AIC BIC

Mental rotation example

Q-diffusion 832.2 852.2 880.2
1PL 835.1 857.1 887.9
1PL guessing 846.5 866.5 894.5
2PL 830.5 870.5 926.4
3PL full 819.2 859.2 915.1

Chess ability example

Q-diffusion 4,263.0 4,341.0 4,479.2
1PL 4,309.3 4,351.3 4,425.7
1PL guessing 4,214.8 4,294.8 4,436.7
2PL 4,178.4 4,258.4 4,400.3
3PL full 4,164.8 4,282.8 4,491.9

Note. Models were fitted with the accuracy data of mental rotation
(Example 1) and chess ability (Example 2). The fit statistics of the best
fitting models are set in italics. LL � log likelihood; AIC � Akaike
information criterion; BIC � Bayesian information criterion; 1PL model �
one-parameter logistic model; 2PL model � two-parameter logistic model;
3PL model � three-parameter logistic model.
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The model setup is as follows. First, we assume that the binary
(M � 2) responses are Bernoulli distributed according to Equation
6. We approximate the response time distribution with a lognormal
distribution, that is, log(RTkj) � normal(�kj, �kj

2 ). Parameters �
and � can be obtained if the values of mean and variance are
known:

ukj � log�E�RTkj�� �
1

2�1 �
var�RTkj�

E�RTkj�
2 �

�kj
2 � log�1 �

var�RTkj�

E�RTkj�
2 � . (12)

The mean and variance are derived in Wagenmakers, Grasman,
and Molenaar (2005) and are functions of the Q-diffusion model
parameters:
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. (13)

In a simulation study, we established good recovery of the param-
eters of the full model including Ter

p (i.e., nondecision time varying
by person).

As uninformative item priors for a i and v i, we use uniform
distributions from .01 to .50 and from .01 to 100, respectively. As
person priors for ap, vp, and Ter

p , we choose lognormal distribu-
tions with � and � of 0 and 1, respectively. Note that compared
with the other priors, the prior of a i appears to be relatively
narrow. However, from experiences with fitting the Q-diffusion
model, we encountered that a i was always roughly in the range of
.25 to .35. We drew 10,000 samples from the posterior distribution
and discarded the first 5,000 as burn-in. Judged from the plots of
the Markov chain Monte Carlo output, all chains converged.

The fit of the Q-diffusion model was evaluated by means of the
posterior predictive distribution (Gelman, Carlin, Stern, & Rubin,
2004), which is the distribution that is predicted for the observed
data given the estimated model. If the model is the true model, the
posterior predictive distribution and the observed distribution are
asymptotically equivalent. Figure 5 demonstrates a high degree of
equivalence for the mental rotation data. Taken together, these
results indicate that the Q-diffusion model is feasible and support
the hypothesis that mental rotation is a simple ability.

Example 2: Chess

The mental rotation example is a theoretically interesting one
but does not provide us with a strong external criterion that would
allow us to examine the predictive properties of Q-diffusion model
parameters. An example data set that does allow for such compar-
ison is composed of a subset of data derived from a chess ability
test (i.e., the Amsterdam Chess Test; van der Maas & Wagenmak-
ers, 2005). In this test, chess players solve chess puzzles that
require the respondent to, for instance, select the best move given
a certain configuration of pieces on the board. The advantage of

the chess data set is that it contains a very strong criterion measure
in the form of Elo ratings (Elo, 1978). The Elo rating is based on
the number of wins and losses of a given chess player and is
updated on the basis of the outcomes of officially played games.
Elo ratings are very good predictors of game results. Having a
strong external criterion measure allows us to evaluate the fit of the
Q-diffusion model in a direct way.

Some aspects of the data set are challenging. First, the item
format of these chess puzzles was open ended. Because the number
of legitimate sensible moves in chess is limited, we can interpret
the item format as a multiple-choice format with an unknown
number of options. For this reason, we apply Equation 7 to the
binary scored responses. The correction for guessing used in that
equation, however, cannot easily be applied to response times (see
Equation 5). We followed the line of reasoning given in footnote
8, assuming that an increase in alternatives primarily increases v i,
the item drift rate or difficulty of the item. The corrected item drift
rate v i� is then a function of Mi and all other person and item
parameters, where v i represents the item drift rate for two alter-
natives:

ak
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� ak
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p; aj
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ivj

i
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These transformed parameters are then used to compute E(RT) and
var(RT) according to Equation 12. We were able to implement this
setup in Winbugs and applied it to this example11, estimating M as
a separate parameter for each item.

An additional problem is that chess-playing ability in general
consists of many different abilities, as well as specific bits of
knowledge. For certain types of items, such as endgame puzzles,
one needs to know specific solution rules. If not, one will certainly
fail such items, even when one is allowed lots of time. For these
items, the Q-diffusion model cannot be correct. However, some
subtests of the chess test consist of so-called tactical items in
which knowledge is relatively unimportant. We limit our analyses
to 20 chess items (the 20 tactical items of the Choose-a-Move
Task, Test A, from the Amsterdam Chess Test; van der Maas &
Wagenmakers, 2005) and analyze the data with the full
Q-diffusion model according to the Bayesian setup described
earlier.

In the model-fitting procedure, we used a uniform distribution
ranging from 1.01 to 500 for M. Other priors were equal to those
applied in the mental rotation example. We drew 10,000 samples
from the posterior distribution and discarded the first 5,000 as
burn-in. Judging from the plots of the Markov chain Monte Carlo
output, all chains converged. For all items, the posterior predictive
distributions and the observed distribution are similar.

Table 2 displays the relations of Elo, tournament ratings, and
age with sum scores, mean response times, person drift rates,
person response cautions, and nondecision time. Using drift rate

11 When M � 2, equations get numerically too complex for the standard
WinBUGS program (i.e., sampling proceeds extremely slow or is not
possible at all). Therefore, when M � 2, we implemented the Q-diffusion
model in the WinBUGS Development Interface (WBDev; Lunn, 2003),
which is a freely available WinBUGS add-on program.
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instead of test score improves validity slightly. Hence, the use of
response times appears to be beneficial. However, it is prudent to
note that, with the accuracy data only, the 2PL model provided a
better fit to the data than the Q-diffusion model. Hence, the
evidence that we are dealing with a simple ability here is less
convincing than in the mental rotation example. Note that age
correlates most highly with Ter, a result also found in other
applications of diffusion modeling (e.g., Ratcliff, Tapar, & McK-
oon, 2001).

Relation to Other IRT Models

Historically, there have been many attempts to incorporate
response times into IRT models. This is an ongoing research
topic. In addition, there are several relatively novel IRT models
that handle response time in a new way (van der Linden, 2009).
Also, different models have been suggested for guessing. In
this section, we compare the Q-diffusion model with such
models.

Figure 5. Quantile–quantile plot comparing the predicted quantiles of the log(RT) distribution according to the
Q-diffusion model (x-axis) to the observed quantiles of the log(RT) distribution (y-axis).

Table 2
Correlations of the Standard Test Statistics, Person Estimates According to the 1PL and 2PL
Models, and the Q-Diffusion Parameters Person Drift Rate (v), Response Caution (a), and
Nondecision Time (Ter), With the Elo Ratings and Ages of Chess Players

Person Test score Response time 1PL � 2PL � v p a p Ter

Elo rating 0.68 �0.44 0.67 0.69 0.72 �0.38 �0.17
Age �0.35 0.54 �0.35 �0.33 �0.34 0.24 0.60

Note. Data are from van der Maas and Wagenmakers’s (2005) chess study. 1PL model � one-parameter
logistic model; 2PL model � two-parameter logistic model; � � person ability.
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The D-Diffusion IRM

We first return to the interpretation of the 2PL in terms of the
diffusion parameters by Tuerlinckx and De Boeck (2005). We
have argued that this interpretation makes sense for attitude and
personality tests, because attitudes and personality traits often
suggest a bipolar structure; examples are pro versus contra atti-
tudes and introverted versus extraverted personalities. In such
cases, item and person drift rates can be negative; therefore, the
difference function v � vp � v i seems reasonable. Because a has
to be positive, the ratio function seems appropriate for a �
g(ap,a i). Hence, for bipolar traits we propose the following:
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This is a minor extension of Tuerlinckx and De Boeck’s model,
but it clarifies the role of the person (response caution) and item
(time pressure) part of the discrimination parameter. We call
this model the D-diffusion item response model, where D de-
notes difference.

An interesting consequence of this separation of the person and
item role in boundary separation for both the Q- and D-diffusion
item response models, is that it allows one to model person fit.
Strandmark and Linn (1987) presented a 2PL model for person fit
(see also Ferrando, 2007; Reise, 2000). Of interest, their 2PL
model is similar to the D-diffusion item response model. In their
model, the discrimination parameter of the 2PL is equal to the
product of a person and an item discrimination parameter. How-
ever, both the interpretation and the estimation of Strandmark and
Linn’s model are problematic. We think that the concepts of
response caution and time pressure may help to interpret the
person and item discrimination parameter in this model. Such an
interpretation directly suggests other means of testing the interpre-
tation, such as experimental manipulations of response caution or
time pressure and/or using response time data.

When we define person fit in terms of response caution, we can
also see that person fit plays a different role in attitude testing than
in ability testing. In the D-diffusion model, a lower level of
response caution may increase P(agree) for � � �. In the
Q-diffusion model, however, a lower level of response caution is
always counterproductive, because it decreases P� for all (posi-
tive) values of �.

IRT Models for Response Times

A number of IRT-type models for the joint analysis of accuracy
and response time were reviewed by van der Linden (2009). One
of the key models in this tradition is Rasch’s (1960) model for
misreadings and reading speed. In the model part for misreadings,
the expected number of misreadings depends on a probability,
�jk � �j�k, that is, the ratio of text difficulty and person reading
ability. In the model part for RT, the speed parameter (the expected
number of words read per time unit) equals �jk � �j�k. This
suggests that the same parameters explain accuracy and response
times. However, Rasch did not necessarily believe this to be the
case and proposed that this be decided empirically. This is exactly
the line followed by van der Linden and his collaborators; van der

Linden (2007) proposed a hierarchical approach, in which RT and
responses are modeled separately by item and person parameters
that can be related in different ways at a second level of modeling,
depending on the data. Because his model is currently the most
promising approach within IRT, we compare our model to the
hierarchical approach.12

A key idea in van der Linden’s (2007) and most other IRT
response time models is that, in addition to the usual ability
parameter, a new latent construct is required, usually in the form of
a speed parameter. He distinguished between item time intensity
and person speed parameters on the one hand and item difficulty
and person ability parameters on the other. Item time intensity and
person speed are used to model response times, whereas item
difficulty and person ability figure in the accuracy model. Item
difficulty and time intensity are latent parameters that derive their
meaning entirely from the fact that they represent the effects of the
items on the probability of a correct response and the time spent on
items, respectively. Because these are different quantities, the two
types of effects are different, although they may correlate across
items (van der Linden, 2009). Hence, the item and person param-
eters are combined only at the second order level of van der
Linden’s hierarchical model.

An important underlying idea in van der Linden’s (2009) model
is the fundamental equation of response time modeling. According
to van der Linden, the person speed parameter equals the amount
of labor required to solve the item divided by response time.
Hence, response time is the ratio of amount of labor and speed. A
logarithmic transformation then gives E[ln(RTjk)] � �j � �k. This
equation is the basis for the response time part of van der Linden’s
model.

How does this model relate to the Q-diffusion model? First of
all, we note that parameters introduced in van der Linden’s (2007)
model are typical latent variables affecting either accuracy or
response time. In the Q-diffusion model, we have no such vari-
ables. Drift rate and boundary separation fundamentally differ
from the speed and ability parameters of the model types discussed
earlier. This is because, in the Q-diffusion model, these are process
parameters, which are of equal importance to accuracy and to
response time. Because they are not defined by their effects on the
probability of a correct response and time spent on items, as the
standard IRT parameters are, there is no objection to using them
within the same level of modeling.

Of course, an important advantage of the Q-diffusion model is
that its extension to response time modeling need not be crafted,
because it is the very basis of the model. Given appropriate data,

12 van der Linden (2009) criticized models that integrate response time
and accuracy at one level. An example is Roskam’s (1997) model in which
the log of response time is added to the � � � part of the 1PL model, which
increases P� when more time is spent on the item. In other models this
correction is replaced by a speed parameter (Verhelst, Verstralen, &
Jansen, 1997) or modified by person and item parameters (Wang &
Hanson, 2005). The general form of these types of models is logit(P�) �
�k � �k � �j. An example of a model that integrates accuracy parameters
in a model for response time is Thissen’s (1983) model: ln(RTjk) � � �
�k � �j � �(�j�k � �j) � εjk, where � is a general intercept, �k and �j are
slowness parameters of person i and item j, respectively, � determines the
influence of the usual 2PL response parameter structure and, ε is a
normally distributed error term.
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we could fit the joint distribution of accuracy and response time as
specified in Equation 2. We can also use the equation for the mean
response time (Equation 5). It is informative to relate the mean
response time prediction of the diffusion model to van der Lin-
den’s (2009) fundamental equation of response time modeling. As
explained in footnote 1, for reasonably high values of av, expected
response time equals a/2v. Hence,
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In words, the time intensity and speed parameters in van der
Linden’s model relate linearly to the logarithm of the ratio of drift
rates and item boundary separations for items and persons, respec-
tively. Because van der Linden applied standard 2PL or 3PL to the
response data, the translation of his difficulty and ability parame-
ters is already specified in Equation 16, as the products of item and
person drift rates and boundary separations, respectively (see van
der Linden, 2009).

These relations constrain the model at the second level of van
der Linden’s (2007) hierarchical model, which in turn allows for a
test of the Q-diffusion model within the modeling approach of van
der Linden (Fox, Klein Entink, & van der Linden, 2007).

For instance, if speed and ability parameters at the second level
in van der Linden’s model are positively correlated, then individ-
ual differences are primarily due to differences in drift rate (e.g.,
see van der Linden, 2007). If these parameters correlate negatively,
the individual differences in drift rate are probably similar across
subjects, and differences are mainly due to differences in response
caution (see Example 2 of Klein Entink, Fox, & van der Linden,
2009).

There is one important problem for the Q-diffusion model that
emerges from this comparison. Dimensional analysis, as applied to
Equation 3, leads to sound results. Boundary separation is mea-
sured in units of information, and drift rate is a speed measure
(units per seconds), so that their ratio RT (DT) is measured in
seconds. However, because we modeled v and a as ratios of the
person and item parameters, they become dimensionless quanti-
ties. As a consequence, RT becomes dimensionless too.

To solve this problem, we have to reconsider our choices of v �
f(vp,v i) and a � g(ap,a i). For v, we suggested a solution in
footnote 6. If vp is the information-processing power of the person,
and v i is the force required to solve the item, their ratio v is a speed
measure. For g, as a provisional solution, we suggest that ap be
defined in units of information, and we suggest that time pressure,
a i, be viewed as a dimensionless quantity modifying person re-
sponse caution. Clearly, more work is required here, involving
precise analysis of how people set their response boundaries and
how they are influenced by task factors, such as instruction,
rewards, and time limits. This is currently an active area of
research in experimental psychology (e.g., Simen et al., 2009;
Wagenmakers, Ratcliff, Gomez, & McKoon, 2008).

IRT Models for Guessing

The Q-diffusion model handles guessing in a principled way:
The guessing probability for equally attractive response options
equals 1/M for zero ability. We note that it is quite remarkable that
guessing can, in fact, be handled by restricting the 2PL model (to
positive �) instead of extending the model with a guessing param-
eter, as is common in the IRT tradition. How, precisely, does the
Q-diffusion model relate to other models for guessing?

Currently, the 3PL is by far the most popular IRT model to
accommodate guessing. Yet, this model suffers from at least two
problems. First, the estimates of 3PL parameters are unstable,
especially for small samples (see San Martin et al., 2006, for an
overview). If the guessing parameters are constrained to be equal
to each other, or to 1/M, this problem is less severe. If, addition-
ally, all discrimination parameters are set to unity, we obtain the
difference model with guessing (DM-G), or the Rasch model with
guessing discussed earlier. However, this model seems to have
worse fit in the comparison of models by Ramsay (1989).

The second problem of the 3PL, which also plagues the DM-G,
is its interpretation. As noted earlier, different interpretations based
on a distinction in a p-process of searching for the correct answer,
and a g-process for guessing are possible (Hutchinson, 1991).
Subjects may search for the correct answer, and guess when this
search fails (assuming that they recognize their failure); however,
other serial or parallel setups are possible. According to San
Martin et al. (2006), the success of guessing also depends on
ability. They therefore introduce ability-based guessing within the
DM-G model, by making the success of the g-process dependent
on ability, weighted by a discrimination parameter �:

P� �
e��k��j�

1 � e��k��j� � �1 �
e��k��j�

1�e��k��j�� e�j�k��j

1�e�j�k��j
. (17)

For � � 0, this model reduces to the DM-G with guessing
parameter equal to the expit of �. In an empirical example, they
show that this data-mining model with ability-based guessing
(DM-AG) better explains the data than the DM or the DM-G.
However, a disadvantage of the DM-AG (or 1PL-AG, as San
Martin et al., 2005, called it) is that the p-process and g-process are
not well separated anymore. If ability plays a too large role in
guessing, the success of the g-process could be equal to or even
greater than the success of the p-process. Also, for very low ability,
the model predicts below chance responding (Property 3; see San
Martin et al., 2005).

As Ramsay (1989) remarked, it would be more elegant to have
a model based on a single process model. Especially when the p-
and g-process get mixed up, a single process model might be
preferable. We think that Ramsay’s QM and our Q-diffusion
model are more attractive for this reason. In the QM, guessing
depends on ability, and there is a natural transition form accurate
responding to guessing: The lower the level of ability, the lower
the probability of a correct response; this probability has its lower
asymptote at 1/M for an ability level of zero (which represents no
ability). In the QM, there is just one probabilistic process: ability-
based guessing. Pure guessing, educated guessing (P� � 1/M),
and correct responding are explained by the same underlying
mechanism.

Of course, sometimes a two-process description of item re-
sponding might be more accurate. Cao and Stokes (2008) and
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Bechger, Maris, and Verstralen (2005) discussed several guessing
scenarios and the associated IRT models. It would be very inter-
esting to attempt to derive these models from sequential sampling
models of decision making that include a guessing process (see,
e.g., Ratcliff, 2006). The DM-AG may serve as a basic model here.

Another model for guessing was introduced by Hessen (2004,
2005). Hessen investigated a subclass of the four parameter logis-
tic item response model, for which both specific objectivity and
sufficiency of the total score for the latent trait hold. One special
case that Hessen (2004) proposed is as follows:

P� �
�/e�j � e�k��j

1 � e�k��j
. (18)

This IRT model has upper asymptotes at 1 but lower asymptotes at
�/e�j. Hence, the easier the item is, the higher the guessing asymp-
tote becomes. This, in a sense, mirrors the DM-AG in that the
success of guessing depends on the difficulty of the item and not
on the ability of the subject. We therefore call this model the
DM-DG, for difficulty-based guessing.

The prime attractiveness of Hessen’s (2004) model lies in the
statistical properties of specific objectivity and sufficiency. These
advantages also apply to the DM-G and, of course, the DM but do
not apply to the DM-AG or the QM. Ramsay (1989) discussed a
way in which the QM permits specific objective comparisons, but
clearly sufficiency of the total score for ability is missing. This is
a disadvantage, but we agree with Ramsay’s remark that we should
not overemphasize statistical convenience.

Discussion

In introductions to IRT, the preference for the logistic equation
is typically explained in terms of statistical or measurement-
theoretical convenience. However, from a substantive point of
view, the lack of a psychological justification for this key property
of the measurement model compromises test validity. The reason
is that validity requires a causal mechanism linking the trait or
ability with the item responses (Borsboom & Mellenbergh, 2007;
Borsboom et al., 2004). In the absence of such a mechanism, the
relation between the targeted attribute and the item responses is
essentially a black box, and the psychological appropriateness of
the function that describes this relation becomes an article of faith.
Because the processes that lie between item administration and
item response are psychological in nature, the only way to remedy
this situation is to construct psychological theories of item re-
sponse processes and to link these to models for individual differ-
ences. In the positive ability model, we make this important step.
Apart from the fact that the ensuing investigation, in our view, has
produced many unexpected implications and surprising results, the
most important aspect of this article may be that it gives proof of
concept: It is possible to systematically connect latent variables to
item responses through process models to get a substantive handle
on the measurement problem in psychology.

Clearly, however, we have only begun to investigate the com-
mon ground covered by IRT and cognitive process models. We
consider the further exploration of this territory to be of significant
importance for both IRT modeling and formal models of cognitive
psychology. Some possibilities for advances along these lines are
the following.

First, in the current article, we proposed a fundamental differ-
ence between ability tests on the one hand and personality and
attitude tests on the other, by noting that a diffusion process
renders a traditional IRT model unlikely for abilities but plausible
for personality and attitudes. This is surprising because IRT mod-
els have been traditionally proposed for, and applied in the context
of, ability testing: Although applications to personality and atti-
tudes have become more frequent in the past decades, these are
clearly spin-offs of the ability testing approach. It turns out,
however, that the situation might as well have been reversed: From
a process-modeling point of view, standard IRT models are plau-
sible for attitudes and personality but not necessarily for ability
tests. This, of course, invites further investigations into the sub-
stantive nature of abilities versus personality traits and attitudes
and into the methodological and psychometric treatment of test
scores that is consistent with that nature.

The item response model that we argue is required for abilities
radically differs from standard item response models in a number
of respects. In particular, the postulate that ability is essentially
positive has far-reaching implications. It leads to scales with
natural zero points, inviting further analysis concerning the mea-
surement properties of such scales. It also leads to an item response
model that incorporates guessing as part of the decision process. In
contrast to other item response models of guessing, the positive
ability model can accommodate for guessing by restricting instead
of extending the standard 2PL model. This is a remarkable result.
Finally, the modeling framework leads to novel interpretations of
standard item response parameters. For instance, it is surprising
that the positive ability model has no standard � parameter. In-
stead, the difficulty of the item is incorporated in the discrimina-
tion parameter. At the same time, we have shown that standard
ability and discrimination parameters, as well as van der Linden’s
(2007) time intensity and speed parameters, can be translated to the
basic diffusion parameters of drift rate and boundary separation.
The approach of van der Linden stands out as the best current
psychometric model for accuracy and response times; therefore,
the fact that we were able to find such strong relations between his
approach and ours is promising.

Considering abilities and their measurement, we think that the
positive ability model strongly suggests that the appearance of
unidimensionality for broad sets of items, as is observed, for
instance, in intelligence testing or educational measurement, is just
that: appearance. Arithmetic items for addition and multiplication
simply cannot be unidimensional, because they depend on dis-
cretely separable abilities, each of which is plausibly governed by
a separate positive ability model. The appearance of unidimen-
sionality probably results from the fact that these abilities are
strongly intertwined and arranged in a hierarchical fashion; this, in
turn, results in data that appear to be unidimensional because of the
implied strong positive association between item responses. How-
ever, this should not be mistaken for evidence that a single ability
is in play. It merely means that individual differences in perfor-
mance can be reasonably described by a scalar variable. Statistical
unidimensionality, thus, does not imply that a single ability is
measured. It is important to stress this fact, because in both the
psychometric and substantive literatures, the concepts of a psy-
chometric latent variable and a substantive ability have become
conflated, as have the activities of fitting a unidimensional model
and measuring a single ability; these concepts and activities do not
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coincide and should be separated clearly (van der Maas et al.,
2006). The diffusion account may be useful in disentangling dif-
ferent abilities, because it extends the standard IRT paradigm with
predictions on the behavior of response time data. Building up an
account of the relations between distinct abilities in typical tests
should be a main point on the psychometric and psychological
research agendas for the next decades.

Naturally, the presented modeling approach hinges on the ap-
propriateness of the chosen process model. Thus, one possible
critique of our model could be based on the fact that the diffusion
model is normally applied to simple fast decisions, as in perceptual
tasks or lexical decision research, rather than to the type of
decisions found in tests used in differential psychology. For ex-
ample, in many ability tests that are analyzed with IRT, the
decision process may consist of longer, perhaps sequential, stages
that could probably not be reduced to one simple random walk of
information accumulation. In this case, a simple random walk is at
best a rough approximation of the underlying decision process. On
the other hand, given reasonable assumptions, more complex de-
cision models reduce to the diffusion model (Bogacz et al., 2006).
Also, some slow responses to certain knowledge-based questions
(What is the biggest country of Europe?) may be well described by
a simple random walk process. For other decisions, for instance,
those involving a series of computations, a simple random walk
may be too simplistic but may still serve as a reasonable first
approximation. In addition, it has been shown that optimal deci-
sion making, even in more complex decision models, may be best
described by the diffusion model (Bogacz et al, 2006; Ratcliff et
al., 1999).

Another strong assumption in our approach concerns the fact
that ability is essentially positive. First, it could be argued that
some abilities do, in fact, have a bipolar structure, which admits for
both positive and negative values in the model. A classic example
is the Piagetian ability to conserve quantitative properties as num-
ber mass and volume, in spite of changes in form. Children who do
not understand conservation systematically score below chance
level on multiple-choice items of a conservation test. In such a
case, all qualitative implications of Tuerlinckx and De Boeck’s
(2005) model make perfect sense, as explained in footnote 4, and
we would recommend use of the D-diffusion item response model
in this case (Equation 15). However, we do not believe this to be
a counterexample to our thesis of ability being essentially positive,
because children’s responses to conservation items are determined
by two mutual exclusive strategies or abilities causing sudden
transitions in developmental trajectories (van der Maas & Mole-
naar, 1992), and each of these should be constructed as being an
essentially positive ability.

Second, the Q-diffusion model requires tests that measure a
single ability. Because some psychological and educational tests
clearly measure a host of related abilities, the applicability of the
Q-diffusion model to such cases may be limited. Perhaps a con-
junctive multidimensional or multicomponent Q-diffusion model
could be developed for such situations. On the one hand, this
represents an opportunity for further research. On the other hand,
one could also argue that we should reconsider the use of tests that
depend on multiple related abilities. From a measurement point of
view, single ability tests should be preferred. The integration of
simple abilities into higher order abilities, perhaps culminating in
what seems to be a single overarching dimension, should ideally be

explicitly modeled; this would arguably be a more transparent
approach than the current practice, in which multiple related abil-
ities are implicitly grouped together in a single dimension. The
disadvantage of the latter procedure is that the emergent single
dimension no longer represents a theoretically transparent psycho-
logical concept.

Cognitive diagnosis models (de la Torre, 2009; Embretson,
1984; Hoskens & De Boeck, 2001; Maris, 1995) share the basic
idea that psychometric models should ideally be formalized sub-
stantive theories of item responses. In addition, in cognitive diag-
nostic models, the item response probabilities are modeled as a
function of a constellation of skills that have the character of
essentially positive abilities. For instance, these models may ana-
lyze the response to an item like (2 � 2)/6 � 3 � ? by decom-
posing it into skills for addition, multiplication, and fractions. The
current model, however, provides a process level account of the
simple abilities themselves; that is, it applies to simple abilities in
isolation. It should be possible to integrate these two approaches
through the construction of hierarchical models involving the
interplay between distinct simple abilities, and this represents an
interesting avenue for further research.

Third, a rather radical consequence of the definition of ability in
the Q-diffusion model is that any able person will eventually solve
all items of test, even if ability is very small and the item extremely
difficult. This consequence is theoretically valuable because it
represents an important testable prediction that flows naturally
from the model. It is also useful to characterize the nature of
simple abilities. However, in psychometric practice, it may not be
appropriate in certain situations. In these cases, extensions of the
Ratcliff diffusion model (e.g., introducing variance in drift rates)
can be used to eliminate this property of the model so that it allows
for response errors even when boundary separation (available time
to respond) approaches infinity.

A final limitation of the Q-diffusion model concerns the solution
we propose to deal with multiple-choice items. We have derived
the correction for multiple-choice from Bock’s (1972) nominal
response model, which leads to a simple extension of the
Q-diffusion model that can handle multiple-choice items. How-
ever, the resulting transformation is not so easily applicable to the
formula for response times. As a consequence, the Bayesian fit
procedure for M � 2 is complicated and requires additional as-
sumptions. Thus, it would be preferable to derive a Q-diffusion
type model from a multiple-choice stochastic sequential sampling
model for decision making. In view of the recent interest in
multiple-choice decision models in mathematical psychology (e.g.,
McMillen & Holmes, 2006), we are hopeful that such an approach
is within reach.

Clearly, the connection between process models for decision
making and IRT models for individual differences is an extremely
fruitful one. It allows researchers in individual differences research
to craft process models for their item responses as well as response
times and to develop new research strategies and hypotheses that
may function to elucidate how tests work. The proposed systematic
connection between psychological processes and psychometric
latent variables may allow researchers to address their validity
problems by uncovering how their tests work, that is, by explicitly
modeling the processes that lie between item administration and
item response (Borsboom et al., 2004). For this reason, the present
investigations may do much more than merely extend the family of
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IRT models with some new members; they may serve to finally get
a grip on the validity issues that have plagued psychological
testing for the past century.
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